学科研究

后量子密码技术发展与高职院校开设密码学专业的可行性研究

摘要: 随着量子计算机 的不断发展, 传统密码学技 术面临着被破解的风险,后 量子密码技术 (以下简称 PQC)的研究和应用变得越 来越重要。本文旨在探究 PQC 的发展与实现,并基于 PQC发展面临的潜在挑战对 高职院校开设密码学专业的 可行性进行讨论。此外,本 文还使用liboqs库实现了密钥 交换, 并基于LRWE和NTT 的后量子密码协议进行加解 密,为了解PQC的应用与实 现细节提供直接参考。

关键词:后量子密码技 (PQC) LWE, RL-WE、量子计算机、NTT

一、引言

量子计算机发展速度非常快,对 现有密码系统的安全构成了威胁。后 量子密码 (POC) 旨在开发新的密码 算法,抵抗量子计算机的攻击。

(1) 量子计算机

量子计算机是一种利用量子力学 原理进行复杂计算的计算机, 其叠加 性、量子位纠缠、量子加速等性质, 使其能够进行并行计算, 提供比经典 计算机更快的解决复杂问题的潜力型, 随着量子位数量的增加, 其计算能力 也呈现指数增长®,如用于大整数分解 的Shor's 算法和搜索未排序数据库的 Grover's 算法¹⁴,就展示出比经典计算 机更快解决特定问题的潜力,这是许 多密码系统的基础。

(2) 后量子密码

后量子密码,简称PQC,是指设 计用于抵御量子计算机攻击的密码算 法和协议。它是密码学的一个领域, 专注于开发能够抵御大规模、强大量 子计算机潜在威胁的加解密方案®,这 些密码方案基于经典和量子计算机都 难以计算的数学问题设计。

(3) PQC研究现状

美国国家标准与技术研究院 (NIST) 于2016年启动后量子密码标准 化项目,邀请研究人员和组织提出后 量子密码算法。截至目前,该项目经 历4轮,征集到了基于格、基于编 码、基于多变量、基于哈希、基于同 源等各类密码方法。NIST在2024年8 月发布了首批3项后量子密码标准, 详见表1, 并计划在不久的将来推出第 4项标准。这些标准包括多种技术和方 法, 以增强和维护数字基础设施的安 全性和完整性。

我国也于2018年面向全国启动了 密码算法设计竞赛活动,筛选出14个 公钥密码方案。此外,国内相关企业 和组织也在积极开展后量子密码应用 标准的探索。

二、PQC的实现

(1) 预备知识

带误差学习(LWE)问题®代表了 后量子密码中基于格的加密范式中的 一个关键密码挑战。在LWE问题中, 线性方程组包括一个误差项,该公式 如(1),给定一个矩阵A、密钥向量S和 一个小的随机向量e,从观察向量b中 恢复秘钥向量S。这个问题的难度源于

噪声e,导致观察向量b与真实乘积A ·S之间存在差异。

$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \mod q$

模多项式环『是一种代数结构、由 于其对多项式运算和系数算术的双重 约束,在密码学中得到广泛应用。模 多项式环的结构如(2)所示,主要由两 个部分组成: (3)和(4)。 χ^m+1 的模的概 念代表一种抽象的数学思想, 定义为 X ™+1=0, 因此, X ™=-1。 当处理一个多 项式 $\mathbb{Z}(X)$, 其中 \mathbb{N} 时,通过 X^{m+1} 的模去除度数高于 X™的项。

$Z(x) \mod f(x)$ $Z(x) = z_0 + z_1 x + z_2 x^2 + z_3 x^3 + \dots z_n x^n$ (3) $f(x) = x^m + 1$

RLWE (带误差的环学习)问题® 代表了LWE问题的一个变体。该方法 不是使用通用矩阵 A, 而是使用更简 单的循环矩阵。具体结构如下:

RLWE问题需将矩阵和向量映射 到模多项式环中。这种映射选择适当的 模多项式来约束最高幂级数, 仅使用 有限数量的元素,从而简化计算要求 并提高效率。其表达式为:

$A(x) * S(x) + e(x) = b(x) \mod q \pmod{x^4 + 1}$

(2) 密钥交换协议

基于RLWE问题的密钥交换协议 展开为三个不同阶段,详见图1。

假设 Alice 和 Bob 两个用户, 旨在 为后量子加密生成会话密钥。①初始 化阶段: Alice和Bob就公共矩阵A、 素数模数 q 和误差 e 的分布达成一致; ②密钥生成阶段: Alice 选择一个私向 量Sa,并计算ba=A+Sa+eamod q,其中 ea是从已知分布中随机选择的小误差 向量,然后将ba发送给Bob。类似 地, Bob 选择一个私向量Sa, 并计算 b=A·Sb+emod q, 其中eb也是来自相 同分布的小误差向量,将b。发送给Alice; ③共享密钥阶段: Alice利用Bob 发送的b。和自己的密钥Sa, 计算Ua= Sa*bsmod q。Bob使用从Alice收到的 b_B, 计算U_B=S_{B*}b_Amod q。

(3)安全性

PQC密钥交换协议的安全性依赖 于RLWE问题,重点对误差向量e的大 小进行限制,如果误差向量过大,可能 会导致秘密信息更容易被推测出来;而 如果误差向量过小,则可能无法充分发 挥其对秘密信息的保护作用。在合理范 围内的e₄和e₃的可在不影响协议效率 的前提下,防止第三方从传输的数据ba 和b。中有效地恢复出密钥Sa和Sa,最大 程度地确保协议的安全性。

(4) 数论变换

PQC 主要依赖于解决 RLWE 问 题,而密钥生成计算量大,时间复杂 度高。数论变换算法(NTT)能够降 低计算复杂度,加快密钥生成速度, 同时保持较高的安全性®。NTT将多项 式从系数表示转换为值表示, 使乘法 简化为特定点处的直接计算, 详见图 2, 多项式 A(x)和 B(x), 计算其乘积 C (x), 通过系数到值的转换、逐点乘法 及逆变换回系数形式,并运用分治方 法,将时间复杂度从Oln²)降低至O (nlogn),实现了高效计算。

(5) 代码实现

本文调用libops 库中的 Kyber 算法

实现简单的加密和解密,并基于LR-WE和NTT实现了加解密和密钥交换过 程, 代码详见 "Post-quantum-cryptography-Demo.ipynb" (网址: https: //github.com/IvyWang94/Post_quan tum_cryptography_Demo.git).

三、PQC发展对高职院校 专业设置的需求分析

(1)PQC发展面临的挑战

PQC的发展仍面临多重挑战,在理 论安全方面,清华大学助理教授陈一磊 提出针对解格问题及LWE问题的量子算 法尝试¹⁰¹,虽因存在无法修复的bug而未 成立,但若未来能找到LWE问题的解决 方案,将对PQC构成根本威胁;在物理安 全方面,PQC还面临侧信道攻击的挑战¹¹¹, 瑞典皇家理工学院研究团队已成功利用 "递归学习"的技术开发了一种创新的侧 信道攻击,成功破解了NIST标准化的后 量子密码算法之一——Crystals-Kyber 算法門,展示了加密实现中物理漏洞的潜 在风险和影响。此外,考虑到密码系统过 渡的历史经验,需要很长的一段时间13, 如NIST发布的过渡到PQC标准的初始公 开草案《Transition to Post-Quantum Cryptography Standards》,规 划至2035年完成政府机构的加密系统转 变。在我国,金融行业作为密码应用的重 要领域,正着手前期研究以推动后量子 密码迁移,预计从管理部门发布正式迁 移通知到全行业采用将耗时3至5年。

(2) PQC 技术推广与人才培养

的紧迫性 随着技术的飞速发展,尤其是传统 安全技术的发展赶不上量子计算机的 发展速度,在推进PQC迁移过程中的人 才缺口巨大,据估计我国对密码人才的 需求人数约为30万人,未来5-10年将 达到110万人左右14。从2023年、2024年 的全国教育事业发展统计公报中公布 的数据可知,高职院校毕业生数量超普 通本科院校的毕业生数量,在大学毕业 生中占比约为53%至55.60%,且2024 年招生人数约为555.07万人(高职专 科)和899万人(职业本科),高职院校 的就业率普遍高于普通本科[15]。因此,高 职院校作为技术技能型人才培养的摇 篮,开设密码学技术相关专业,对解决 PQC面临的潜在挑战极为重要。

四、高职院校密码学专业建 设的可行性

我国依托网络空间安全、计算机 科学与技术等一级学科, 在研究生、 本科、职业教育阶段均设有密码学相 关专业。根据2024年3月25日教育部 发布的《关于公布2024年高等职业教 育专科专业设置备案和审批结果的通 知》(教职成函〔2024〕〕号)文件, 我国开设密码学技术应用专业的院校 仅有14所,数量远不满足国家密码安 全发展的需求。同时,根据《密码技 术应用员国家职业技能标准》和《密 码工程技术人员国家职业标准》,可为 高职院校密码学专业开设提供直接指 导,该专业建设体系可见图3。

此外,密码技术是一个实践性很 强的领域,为此,高职院校在该专业 建设过程中, 需紧跟国家信息安全发 展战略,通过与国家密码学会、密码 企业的紧密合作,探索创新产教融合 模式,建设先进的密码技术应用实训 基地,增强学生职业技能和就业竞争

力的同时,为企业提供定制化的人才 培养服务,服务行业发展,实现双赢。

参考文献

[1]Bernstein D J, Lange T. Postquantum cryptography[J]. Nature, 2017, 549(7671): 188-194.

[2]Ladd T D, Jelezko F, Laflamme R. Quantum computers[J]. Nature, 2010, 464(7285): 45-53.

[3]Datta A, Flammia S T, Caves C M. Entanglement and the power of one qubit[J]. Physical Review A, 2005, 72(4): 042316.

[4]Liu Y, Arunachalam S, Temme K. A rigorous and robust quantum speed-up in supervised machine learning[J]. Nature Physics, 2021, 17(9): 1013-1017.

[5]Chen L, Jordan S. Report on post- quantum cryptography[R]. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology, 2016.

[6]Bavdekar R, Chopde E J, Bhatia A, Tiwari K, Daniel S J. Post quantum cryptography: Techniques, challenges, standardization, and directions for future research[Z]. Unpublished.

[7]李梦甜. 基于环 LWE 的全同态 加密方案关键技术研究[D]. 战略支援部 队信息工程大学, 2018.

[8]高翔, 丁敬, 刘杰, 李琳. 基 于 RLWE 问题的后量子安全远程口令 协议ICI//信息安全与密码学: 第 13 届 国际会议, Inscrypt 2017, 中国西 安, 2017年11月3-5日, 修订精 选论文. 卷 13. 斯普林格国际出版, 2018: 99 - 116.

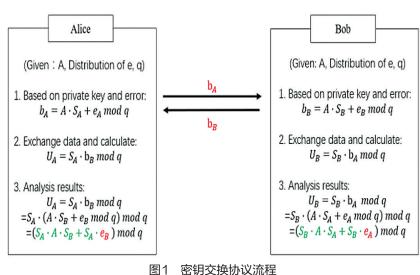
[9]Bisheh-Niasar M, Azarderakhsh R, Mozaffari-Kermani M. Highspeed NTT-based polynomial multiplication accelerator for post-quancryptography[C]//Proceedings of the 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). IEEE, 2021: 94-101.

[10] Chen Y. Quantum algorithms for lattice problems[Z]. Unpub-

[11]吴伟波,刘卓,杨航,张建 平. 后量子密码学的侧信道攻击与对 策综述[J]. 软件学报, 2021, 32(4):

[12]Dubrova E, Ngo K, G**ä**rtner J. Breaking a fifth-order masked implementation of CRYSTALS- Kyber by copy-paste[Z]. Unpublished, 2022.

[13]Barker W, Polk W, Souppaya M. Getting ready for post-quantum cryptography: Exploring challenges associated with adopting and using post-quantum cryptographic algorithms[R]. Dakota Consulting & NIST, 2021.


[14]中国商用密码行业现状深度研 究与发展前景分析报告(2023-2030 年)[R]. 观研天下(北京)信息咨询 有限公司, 2023.

[15]高教发展资讯. 德州学院发展 规划处[J]. 2024, 2(30): 6.

(作者单位:贵州水利水电职业技

表1 NIST发布的首批3项后量子密码标准

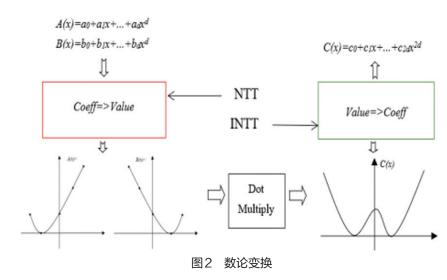


图3 密码技术应用专业

教学 实践

初中数学课后作业设计的深度思考与实践探索

在"双减"政策的大背 景下,如何在保证教育质量 的同时减轻学生的课业负 担,成为了当前教育领域亟 待解决的重要课题。课后作 业作为教学过程中的重要环 节, 其设计不仅关系到学生 对知识的巩固与应用, 更直 接影响到学生的学业负担与 学习兴趣。沿河四中课题组 在近两年的探索实践中,对 初中数学课后作业的设计进 行了深入思考与实践尝试, 揭示了这一看似简单实则复 杂的议题。

一、问题分析

(一)课后作业设计的挑战与困

在落实"双减"政策的过程中, 课后作业被视为提高教育质量与控制 学生作业量的重要出路。然而,这一 看似简单的策略在实施过程中却面临

诸多挑战。首先,学生的个体差异是 课后作业设计的一大难题。不同学生 的学习能力、兴趣与需求各不相同, 设计难度适中的作业往往难以兼顾所 有学生。 若作业难度过高, 部分学生 可能无法完成,导致挫败感; 若作业 过于简单,则无法满足优秀学生的学 习需求,缺乏挑战性。

沿河四中课题组在初期尝试采用 例题变式的方法, 以期在保持作业难 度的同时增加题目的多样性与灵活 性。然而,这一方法并未达到预期效 果,大多数学生认为作业过于简单, 缺乏挑战性,无法满足他们的学习需 求。

(二) 分层作业设计的探索与实践

鉴于例题变式方法的局限性,课 题组进一步展开了分层作业设计的探 索。分层作业设计旨在根据不同学生 的学习能力与需求,为同一班级的学 生设计三类不同难度的作业。这一方 法在一定程度上解决了作业难度与学 生个体差异之间的矛盾, 使得每个学 生都能在适合自己的作业中获得成长。

然而, 分层作业设计也面临着 诸多困难与挑战。首先,设计三类 作业需要投入大量的时间与精力, 增加了教师的工作负担。其次,分 层作业可能引发学生的歧视感与不 公平感,认为自己被区别对待。因 此,在实施分层作业设计时,教师 需要谨慎考虑,确保作业的分层标 准合理、公正,同时加强与学生的 沟通与引导,消除学生的疑虑与不

(三)课后作业设计的长期性与复 杂性

沿河四中课题组的探索实践表 明,课后作业设计并非一蹴而就的简 单任务, 而是一个长期研究与实践的 过程。在设计课后作业时, 教师需要 综合考虑学生的学习需求、个体差 异、学科特点以及教育政策等多方面 因素,确保作业既具有挑战性又符合 学生的实际情况。

此外,课后作业设计还需要关注 作业的反馈与评价机制。通过有效的 反馈与评价, 教师可以及时了解学生 的学习情况与作业完成情况,为后续 的教学提供有针对性的指导与调整。 同时, 学生也可以通过反馈与评价了 解自己的学习情况,明确自己的优点

与不足, 为后续的学习提供方向与动 力。

二、解决办法

(一)分层课后作业设计。学校实 施分层作业制度。老师们根据学生的 学习水平和兴趣爱好,将作业分为基 础巩固、综合应用和思维拓展三个层 次。基础作业旨在巩固课堂知识,综 合作业则是对知识的深化和应用,而 思维拓展作业则鼓励学生进行跨学科 的思考和实践。这样的设计, 既满足 了不同层次学生的需求,又激发了他 们的学习兴趣。

(二)项目式课后作业设计。学校 推行了项目式作业。老师们结合课程 内容,设计了一系列具有实际意义的 项目, 让学生在完成作业的过程中, 能够综合运用所学知识,解决实际问 题。这样的作业形式,不仅锻炼了学 生的实践能力,还培养了他们的团队 合作精神和创新能力。

(三)生活化课后作业设计。学 校鼓励老师们创新作业形式,将书 本作业向生活化作业融合。首先, 生活化作业能增强学生的实践能力

和动手能力, 让他们将所学知识应 用到实际生活中,提高学习的兴趣 和积极性。

(四)"传帮带"模式完成课后作 业。要求优秀学生根据自己的能力和 时间,选择一带一或一带多的方式, 对其他学生进行辅导。课后作业完成 实现了日日清、周周清的目标。学生 们对自己的学习进度有了清晰的认 识,知道自己在什么时间需要完成什

么任务。这有助于他们更好地规划自

己的学习时间,提高学习效率。 (五)教师参与研究课后作业设 计。数学组以学生实际需求为导向, 充分考虑学生的学习特点和负担,开 展了10余次课后作业设计专题研讨。 在研讨过程中, 教师们积极分享经 验,深入探讨,不断优化作业设计, 最终设计出1000余个课后作业案例。 这些案例既注重知识的巩固, 又注重 能力的培养, 更注重兴趣的激发, 切 实减轻了学生的负担。

(六) 在校际交流中探讨课后作业 设计。学校与铜仁学院附中、铜仁十 中、松桃四中、沿河教育教学研究中 心等建立了良好的合作关系, 通过共

享资源、交流经验、共同研讨等方 式,不断提升自身的教育教学水平和 研究能力。

(七)送教下乡送课后作业设计。 少数民族地区城乡教育差距较大。为 了缩小这一差距,沿河四中积极开展 "送教下乡"活动,将优质的教育资 源带到乡镇,组织学校优质教师团队 深入乡镇学校,开展教育教学研讨, 分享教育经验、送去课后作业设计理 念, 让农村教师了解到当前教育发展 的最新动态,提高乡村教师的教育教

学水平。 初中数学课后作业设计是一个复 杂而长期的研究课题。在落实"双 减"政策的过程中,教师需要不断探 索与实践, 寻找适合学生的作业设计 策略与方法。通过关注学生的学习需 求与个体差异、加强作业的分层设计 与反馈评价机制建设等方面的努力, 我们可以为学生提供更加优质、高效 的课后作业体验,促进他们的健康成 长与全面发展。

(作者单位:沿河土家族自治县

第四中学)